一种新的结构材料可以将行动装置的整个外壳变成一个混合式超级电容器/电池,从而取代传统的电池。跟你的手机电池和充电器说声再见吧!
位于美国田纳西州的范德堡大学(Vanderbilt University)奈米材料与能源装置实验室的研究人员们最近设计出一种新的混合材料,它结合了超级电容器和电池的优点,十分适于做成这类行动装置的外壳。虽然目前这种材料的能量密度仍低于锂离子电池,但更大尺寸的外壳足以弥补能量的不足,而且它还腾出了传统电池占用的空间。
范德堡大学教授Cary Pint透露他与该校博士候选人Andrew Westover目前正进行的这项研究,「我们的研究团队正致力于开发混合式『电容器-电池』,其表现就像电容器一样,能够像超级电容器那样保持超长的充放电生命周期,而且还能储存以及提供几乎相当于目前锂离子电池的能量。」
Pint希望这种混合式超级电容器材料可被制造于所有类型的建筑计划结构中──从房屋的外墙和侧板墙到飞机的底盘。「研究这种技术的主要目的之一是希望开发出能够整合于房屋中的储能材料,从而提高屋顶太阳能电池的经济价值,并实现分布式电网系统。」
苹果发布专利US008730179B2采用了一种光电触控萤幕,据称可以收集足够的环境光线,无需电源线就能为采用超级电容器外壳的行动装置充电。
苹果公司日前发布一项可在较小尺寸应用中将太阳能电池板嵌入于触控萤幕的专利消息。虽然这项消息的发布与范德堡大学的超级电容器无关,但搭配光电触控萤幕的行动装置与超级电容器外壳的组合据称可以收集足够的环境光线,从而为无电源线的行动设备充电。
Pint表示,「在这类设备中,其基本原理是相同的,只不过可携式装置的尺寸更小罢了。」
然而,无论是哪一种应用,其目的基本上都是相同的,也就是说,将结构材料变成仍然具有与传统结构材料相同承载耐用性的储能装置,但该诸能系统的使用寿命还得超过在作为建筑材料时的寿命。
「我认为这项研究工作的一些重要成果是,承载储能不会影响系统中所用材料的充电储存能力,而由这个领域还可催生出更多的发展方向。」
图中的结构材料实际上是一种能在装置外壳中储存能量的超级电容器,而无需额外的电池元件。
来源:专业电源厂家www.szrsenda.com
Pint的团队所开发的超级电容器目前能够储存的能量比锂离子电池少10倍,但可以用它们作为其中一部份结构的量进行弥补,而且它们的寿命比电池长1,000倍,使其十分适合行动装置、汽车、飞机与家庭等使用。
「在某些情况下我也不得不站出来说几句,‘总能量’应该是我们最关心的一个衡量指标。储存的能量少10倍,放电次数多1,000倍,这意味着在系统寿命内可储存的能量多100倍。因此这些超级电容器更适合结构性的应用。如果每隔几年就因材料失效而要更换,那么开发这种材料来盖房屋、打造汽车底盘或航空飞行器就没什么意义了。
工作原理
在Pint的原型中,电极是以矽晶圆制造的。晶圆的一边采用化学制程处理,内面覆盖着奈米级孔洞。然后在孔洞中沈积超薄的碳层──类似石墨烯。如同电池中的电解液一样,保留带电离子的聚合物层接着在渗漏进孔洞之处形成两个晶圆/电极之间的夹层。在聚合体冷却和固化后,整个双晶圆结构就会变得异常稳定,能够有效地防止脱层,Pint指出。
传统的固态超级电容器(左)很容易脱层,但范德堡大学的超级电容器(右)内部非常结实,能够保持其结构的完整性。
来源:荣御达电源www.szrsenda.com
透过这种方法做成的超级电容器几分钟就可能充饱电──电池则要几个小时才能充饱──而且可以承受每平方英寸高达44磅的应力和压力以及超过80g的振动加速度。虽然展示用的超级电容器是用矽晶打造的,但研究人员计划进一步改善其承载复合材料技术,以适合更具强韧性的应用。具体措施是利用轻量级的多孔金属(如铝)代替嵌入奈米管的碳复合材料。
Pint认为,「在任何复合材料中,无论是用于航空系统还是电子装置的外壳,最理想的状态都是外部保持平滑的功能表面,储能功能则建构在坚固的内部材料层中。」
此外,包括范德堡大学教授Amrutur Anilkumar、博士后助理Shahana Chatterjee、博士候选人Landon Oakes,以及主修机械工程系的大学生John Tian、Shivaprem Bernath和Farhan Nur Shabab,当地高中生Rob Edwards,均对这项研究有所贡献。
奈米级多孔表面性能可实现高效率的电荷储存,而多孔材料仍使电气和机械上保持与底部看得见的大块电极连接。
来源:荣盛达电源www.szrsenda.com
美国能源部(DoE)的先进能源研究计划署(ARPA-E)在专注于将能量储存整合于结构材料的研究方面已经投资870万美元。获得能源部基础能源科学办公室支持的美国橡树岭国家实验室(ORNL)奈米相位材料科学中心协助提供这类材料的制造。范德堡大学的资金则由美国国家科学基金会(NSF)提供。
上一篇:
先来看看M2接口SSD的威力有多强下一篇:
荣御达产品合格证更新通知